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ACOUSTIC SCATTERING AND ABSORPTION BY A RJGID 

POROUS ELLIPTIC CYLINDRICAL SHELL* 

By William E. Zorumski 
Langley  Research  Center 

SUMMARY 

Solutions for  scattering of a plane  wave  from a thin  rigid  porous  elliptic  cylindrical 
shell   are found in   terms of Mathieu  functions.  The  scattering  problem  reduces  to  an infi- 
nite  set of linear  equations  for  the  coefficients of the  velocity  expansion on the  cylindrical 
surface. Coupling terms  in  these  equations are given by integrals which are evaluated by 
exact  methods.  Solutions are found by the  method of reduction  for  the  internal  standing 
waves and the  external  scattered  waves.  A  special  case of variable  acoustic  impedance 
is found where  the  infinite  systems  uncouple so that  closed-form  solutions  may  be  obtained 
for  the  velocity  coefficients.  Computations are made  for  scattering  in  the  intermediate 
frequency  range,  where  the  wavelength is of the  same  order of magnitude as the  major 
axis of the  cylinder.  Tabulations of the  scattered and dissipated  energies  are  given  for 
various  cylinder  eccentricities,  impedances,  angles of incidence,  and  frequencies. 

INTRODUCTION 

The  problem of acoustic  scattering  from a porous  cylinder  originates  from  the  con- 
temporary need for  methods  to  reduce  noise  from  aircraft  turbofan  engines. In refer-  
ence 1 Marsh has shown that a practical method for  reducing  noise  from  turbofan  engines 
is to  install "broad-band resonators"  inside  the  engine  nacelle.  Because of considerations 
of weight, safety,  and  endurance,  these  resonators are usually  made of thin  porous  sheets 
of material  (either  metallic or fiber-glass-plastic)  which are  fastened  to a honeycomb 
wall  structure.  The  cavities  behind  the  porous  sheet a r e  usually  about  one-quarter  wave- 
length  deep,  since  this  depth  gives good absorbing  qualities. 

In general,  the  greater  the  exposed area of porous  material,  the  more  the sound is 
absorbed, so that  engine  designers  must  look  for  ways  to alter the  engine  geometry  to 
increase  this area. Of course,  this  increase  must  be  accomplished without  upsetting  the 
basic flow field  within  the  engine,  which  presumably has  already  been  optimized on a 

a Porous  Elliptic  Cylinder With Nonlinear  Resistance"  submitted  in  partial  fulfillment 
of the  requirements  for  the  degree of Doctor of Philosophy  in  Engineering  Mechanics, 
Virginia  Polytechnic  Institute,  Blacksburg,  Virginia,  March 1970. 

*The material  presented  herein is based on a thesis  entitled "Acoustic  Scattering by 
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performance  basis. One approach  to  this  problem  has  been  to  install  thin  porous  double- 
walled  radial  spokes or circumferential  rings  in  the engine.  The  optimum size  (from  the 
acoustical  viewpoint) of these  devices is not known, but it is reasonable  to  assume  that 
their  dimensions are of the  same  order of magnitude as the wavelength of the  dominant 
tone. In cross  section,  such a spoke or ring would appear  roughly as an  ellipse. 

The literature on  diffraction is extensive.  The reader  interested  in  this  subject 
should  consult  the  important  review  article by  Bouwkamp (ref. 2). More  than 500 papers 
published  between 1940 and 1954 are reviewed  in  Bouwkamp's  article,  and  the  application 
of Mathieu  functions to  diffraction  problems is discussed.  Briefly,  Mathieu  functions may 
be  used  in  the  study of diffraction (or scattering)  from  elliptic  cylinders.  The  article 
indicates  that  research  prior  to 1954 was  limited  to  studies of the  problem of scattering 
from a strip or slit (cylinder  with  eccentricity 1). This  scattering  problem  has  also  been 
studied  with  an  integral  equation  formulation (ref. 3). 

Since  Bouwkamp's  survey,  several  papers  have  been  published  which  deal  with  cyl- 
inders having eccentricity less than 1. In 1963 Yeh discussed  the  problem of a penetrable 
s t r ip  in t e rms  of a Mathieu  function ser ies  (ref. 4), and  Barakat (ref. 5) made a study of 
the  elliptic  cylinder  with  various  eccentricities.  Barakat  considered  the  exterior  problem 
by using  the  classical  Dirichlet (sound soft)  and Neumann (sound  hard)  boundary  conditions. 
This  work  made  use of recently  computed  tables by Barakat, Houston, and  Levin  (ref. 6). 
These  tables are appropriate  for  scattering  problems  in  the long-wavelength  range. In 
1964 Burke  and  Twersky  (see  refs. 7, 8, and 9) began  investigations  in  which  low-frequency 
approximations  were  used. 

In reference 7 Burke  considered  the  problem of a cylinder  composed of fluid  with a 
density  different  from  that of the  medium  in  which it is immersed. Boundary  conditions 
at the  surface of the  elliptic  cylinder  were  continuity of normal  velocity  and  continuity of 
pressure. His paper,  like  Yeh's  (ref.  4),  considered  the  coupled  interior  and  exterior 
cylinder  problem.  The  analysis of this  problem  resulted  in an infinite set  of algebraic 
equations  for  the  scattered  waves.  Burke  indicated  the  connection  between  truncating 
these sets of equations  and  long-wavelength  approximations. His se r ies  solution  gave  the 
far-field  scattering  amplitude up to  the  sixth power of the  wave  number,  and  the  near-field 
amplitude  (internal  and  external) up to  the  third  power.  Terms  in  the  truncated  equations 
could be  evaluated  from  the  previously  mentioned  tables of Barakat, Houston, and  Levin 
(ref. 6), from  the  tables of Wiltse  and King (refs. 10 and ll), or from  computations  based 
on known expansions of the Mathieu functions in t e rms  of the  other  tabulated  transcen- 
dental  functions. 

This  paper  considers  the  scattering of a plane  wave  from a porous  cylindrical  shell. 
The  cylinder is a thin  elliptic  shell which is made of a rigid porous material.  The  solu- 
tions both inside  and  outside of the  cylinder are obtained  in a general  form and expressed 
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in   terms of the unknown velocity  normal  to  the  cylinder  surface. It is assumed  that  this 
normal  velocity is continuous at the  cylinder  surface  and  that  the  pressure  differential is 
related  to  the  normal  velocity by the  complex  impedance of the  porous  material.  This 
relation  between  pressure  differential and  velocity is used  to  find  the  solution  for  the 
velocity.  With the  velocity  through  the  cylinder  surface known, calculations  may  be  made 
for  other  quantities  such as scattered  energy and pressures  inside  and  outside of the 
cylinder. 

SYMBOLS 

Ar,Br,Cr,Dr  coefficients 

b,ber,bor  characteristic  values 

c:(x) Gegenbauer  polynomial 

C speed of sound 

De t )   Four i e r  coefficient of even  periodic  Mathieu  function 

Dot )   Four ie r  coefficient of odd periodic  Mathieu  function 

DR ratio of dissipated  to  incident  power 

e base of natural  system of logarithms, 2.718 

g([,q) = h[cosh2[ - cos 2 7 

Her(l)(s, 5) = Jer(s, [) + iNer(s, [) 

Her(2)(s,[) = Jer(s,<) - iNer(s,[) 

HOr(')(S, t )  = J O r ( S ,  <) + iNor(s, [) 

Hor(2)(s,[) = JOr (S , [ )  - iNor(s,[) 

h  dimensionless  focal  length 

i unit  imaginary  number 



Jn, Yn Bessel  functions of integer  order 

Ner(s,(),Nor(s,[)  radial  Mathieu  functions of the  second kind 

dimensionless  power 

dimensionless  pressure 

dimensionless  velocity 

component of velocity  normal  to  surface, 5 = Constant 

real   par t  of a complex  number 

even  periodic  Mathieu  function 

odd periodic  Mathieu  function 

ratio of scattered  to  incident  power 

dimensionless  time 

coefficients in series  for g 5 r] q ( 0’ 1 5(504 



W projected  width of cylinder 

x, Y dimensionless  rectangular  coordinates 

Z specific  impedance of cylinder 

a! angle of incidence 

?1 circumferential  elliptical  coordinate 

4; radial  elliptical  coordinate 

50 coordinate of cylinder  surface 

P mass  density 

@ Y  * solutions  to  Mathieu's  equation  and  Mathieu's  modified  equation,  respectively 

w circular  frequency 

Subscripts: 

d  dissipation  in  porous  material 

I incident 

P  incident  plane  waves 

S scattered  waves 

Superscripts: 

i inside of cylinder 

0 outside of cylinder 

(1) denotes  diverging  waves 

(2) denotes  converging  waves 
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* complex  conjugate 

A single  prime  denotes a first derivative  (except for NE, which has  been  defined 
separately). Double pr imes denote a second  derivative. 

Governing  Equations 

Figure 1 shows  the  elliptical  cylinder  coordinates ( f  and q) which will  be  used  to 
study  scattering  from  an  elliptic  cylinder.  These  coordinates are defined by 

X = h cash 5 COS 

y = h  sinh f sin q 

As shown in  figure 1, curves with 5 equal  to a constant are  el l ipses with  focal  points 
at x = *h. Curves with q equal  to a constant are hyperbolas  with  focal  points which 
correspond  to  those of the  ellipses. 

Constant 

Figure 1.- Elliptical coordinates. 
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The  problem  being  considered  herein is the  scattering of a plane  wave  from a 
porous  cylinder  whose  surface  corresponds  to  the  elliptical  coordinate to. This  cyl- 
inder  has a semimajor axis h cosh to and  semiminor axis h  sinh to. The  elliptical 
coordinates are naturally  dimensionless  quantities,  and  it is convenient  to  introduce 
dimensionless  parameters  for  the  other  variables. Thus, h,  p, 2, t, x, y, and Z 
a r e  all defined as dimensionless  parameters: 

h =  w x Focal  length 
C 

P =  Pressure 
PC2 - Velocity 

g =  c 

t = w X Time 

X =  
w X Longitudinal  coordinate 

C 

Y =  
w X Lateral  coordinate 

C 

Impedance 
P C  

Z =  

The  acoustic  field  equations are 

and 

- 
g = -iVp 

where  the  time  factor  exp(-it) is understood. 

The pressure and its gradient  must  be  continuous  inside  and  outside of the  cylinder. 
Therefore,  there  are two continuity  conditions at 5 = 0: 

At the  surface of the  porous  cylinder,  where 5 = to, there   a re  two boundary  conditions 
which relate the internal  and  external  pressure  fields. In order  for  mass  to  be  conserved, 
the  acoustic  velocity  normal  to  the  cylinder  surface  must  be  continuous;  that is, 
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However, there  will  be a pressure  drop at the  cylinder  surface due to  viscous  dissipation 
and inertial  effects within  the  porous  material.  This  pressure  drop is related  to  the 
acoustic  velocity  through  the  specific  impedance of the  material Z; that is, 

The  field  equations  in  elliptical  coordinates  become 

+ h2(cosh 5 - cos q)p = 0 2 2 

and 

Separating  variables  in  equation (7) by letting 

gives 

and 

where 

2 s = h  

Since  the  dimensionless  parameter  h is proportional  to  frequency, s is proportional 
to  frequency-squared. 

Equations (10) and (1 1) a r e  called  Mathieu's  equation  and  Mathieu's  modified  equa- 
tion,  respectively.  The  solution @ of equation (10) must  be a periodic  function of 77, 
of period n or 27r; the  parameter b, which is a function of s, must  be one of a count- 
ably  infinite set of characteristic  values  for  every s. Fourier series representations 
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of these  periodic  solutions are given by equations (40) to (43) in  the appendix. These 
solutions  form a complete  orthogonal set 

= NE 

For each  characteristic value, there are two  independent  solutions of equation (11). These 
solutions a r e  called radial  solutions, or hyperbolic  cylinder  functions.  Series  represen- 
tations of these  solutions are given  in  reference 12. 

Solution for Scattering From Cylinder 

In te rms  of the  notation of reference 12, the  general  equation  for  the  pressure field 
is 

The  asymptotic  expansions of the  radial  solutions show that  solutions  with  the 
superscript (1) are diverging  waves  while  the  superscript (2) indicates  converging  waves. 

It is often  convenient to  work  with  the  real  and  imaginary  parts of the  radial  solu- 
tions. In reference 12, the  radial  solutions are given as 

and 



The  Wronskian of these  solutions is 1; that is 

JerNei - NerJe& = 1 

and 

It can  be shown that,  in order  for  the  pressure and  velocity  to  be  continuous at 5 = 0, the 
pressure  inside  the  cylinder  must be 

From  succeeding  equations,  the  dependence of the  functions on the  parameter s can  be 
understood. 

It is convenient  to  formulate  the  problem  in te rms  of the  normal  velocity  through 
the  cylinder  surface. An expansion  for  this  velocity  may  be  taken  in  the  form 

so that a solution  for  the  coefficients Ur  and Vr is equivalent to finding  the  velocity 
distribution. With equations (8) and (18), it  may  be shown that  equation (17) becomes 

The  pressure  due to plane  waves of unit  amplitude  moving  along a line which is 
inclined at an  angle a to  the  major axis may  be  represented by (refs. 13 and 14) 
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The pressure due to  waves  scattered  from  the  cylinder  may  be  given as 

The  total  pressure  outside of the  cylinder is the  sum of equations (20) and (21); that is, 
pp + p,. If equation (8), used  to  calculate  the  normal  velocity  from  the  total  pressure, is 
matched  with  the  velocity  expansion (eq. (18)), Cr and  Dr  may  be  eliminated  from  the 
expression for the  external  pressure, which  becomes 

The  interior-pressure  solution (eq. (19)) and  the  exterior-pressure  solution (eq. (22)) 
are  each  expressed  in  terms of the  velocity at the  cylinder  surface.  The  pressure  differ- 
ential  and  velocity at the  surface  must  satisfy  equation (6) so that  substituting  equa- 
tions (19), (22), and (18) into  equation  (6) and utilizing  the  orthogonality  properties of the 
periodic  Mathieu  functions (Se, and SO,) give  the  four  infinite sets of equations 

and 
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where 1 = 0,1,2, . . . and  where M Z , ~  and NQ are integrals  that are defined in  the 
symbol list and  evaluated  in  the appendix. These  four  infinite sets of equations  give  the 
coefficients of the  velocity  expansion on the  cylinder  surface (Ur and Vr). Once the 
velocity at the  cylinder  surface is obtained, the  pressure or velocity at any  point  may be 
computed. 

A Special  Case of Variable  Impedance 

There is a special  case of variable  material  impedance  for which it is possible  to 
obtain a simple  algebraic  expression  for Ur and Vr  instead of the  infinite sets of 
equations. If 

where Z' is a constant,  then 

and 

Scattering  Formulas 

Some quantities of interest  are  the  incident power,  the  scattered  and  dissipated 
power,  and  the far-field  root-mean-square  pressure.  The  derivation of formulas  for 
these  quantities is tedious, but routine, and  only the  definitions  and  final  results  are  given 
herein. 

The  projected  width of the  cylinder  on  the  oncoming  plane  wave is 

as shown in  figure 1. Consider a section of the  cylinder  whose  dimensionless  length 

is 1. The  power  due  to  the  incident  wave  which  passes  through  the  projected 

a rea  of this unit length of the  cylinder is 
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In equation (31) a unit dimensionless  length is being  considered.  The  actual  power  for 
5 

this  length is found by multiplying  equation (31) by the  factor  The  scattered power 
is w 2  * 

It may  be shown that  equation (32) reduces  to 

where 

and 

The  power  dissipated  in  the  porous  material is 
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At large  distances  from  the  cylinder  where .$ >> 1, t he   rms  

l a ,  

RESULTS AND DISCUSSION 

Scattering  computations  have  been  made  for  wavelengths  that are of the  same  order 
of magnitude as the  major axis of the  cylinder.  The  longest  wavelength  considered is 
about three  times  the  length of the  major axis. The  parameter s, which is proportional 
to  the  square of the  frequency, is 4 for  this  low-frequency  case.  The  shortest  wavelength 
is about  one-third  the  length of the  major axis, which corresponds  to s = 100. 

The  parameter to  determines  the  eccentricity of the  cylinder.  The ratio of the 
minor axis to  the  major axis of the  cylinder is approximately  equal  to to when to is 
small.  Computations  have  been  made  for  values of to  of 0.2,  0.4, and 0.8. The  largest 
value of to gives a cylinder  with a minor-  to  major-axis  ratio of about 0.68. 

For  the  frequencies  considered  in  this  paper,  the Mathieu  function series  for  the 
pressure and  velocity  fields  were  always  sufficiently  accurate  with 14 terms, so it was 
necessary  to  evaluate Mathieu  functions from  order 0 to  order 14. 

Evaluation of both the  periodic  and  radial  Mathieu  functions (ref. 12) depends on 
computing  the  coefficients D e t )  and D o t ) ,  which appear  in  the  Fourier  series  given 
in  the appendix. These  coefficients are functions of the  parameter s. 

Evaluation of Mathieu  Functions 

Although the  coefficients  for  the  Mathieu  functions a r e  tabulated  in  reference 12 for 
the  range of s used  in  this  paper, it was  easier  to  program  the  computer  to  use  the 
characteristic  values  ber  and bo, to compute  these  coefficients  rather  than  to  read 
and  interpolate  the  tables of coefficients.  The  method  given by  Blanch  in  reference 15 
was  used  for  this computation.  Results were checked  against  the  tables of coefficients 
and were found to  agree  to  eight  significant  figures. With this method of computation it 
is also  possible  to  obtain  the  coefficients  for s > 100 (which are not tabulated) from  the 
tables of characteristic  values  for  large s ( s  > 100) in  reference 12. With the  coeffi- 
cients  available,  Fourier  series could  be  used for computation of the  periodic  solutions. 

The  evaluation of the  radial Mathieu  functions  depends  on  computing Jn and Yn 
(Bessel  functions of the first kind  and  second kind, respectively).  The  Bessel  functions 
of the first kind were  computed by Abramowitz's  method  (see  ref. 16). In this method a 
unit value is assigned  to  Jk  (where  k is large  compared with the  argument of the 
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Bessel function), Jk+l  is taken as zero,  and  then  backward  recurrence is used  to  find 
Jn for  n < k. The  normalization  condition is then  used  to  adjust  the  magnitude of the 
Jn'S. The  Bessel  function YO is obtained from its series representation  in  terms of 
J, Y1 is found from  the  Wronskian  relation,  and  the rest of the Yn'S are found by 
forward  recurrence.  Bessel  functions  computed by this method were  accurate  to  nine or 
ten  significant  figures  for  the  range of arguments used. 

Because of the  scarcity of tabulated  data  available on the  radial Mathieu  functions, 
these  functions  were  calculated by two  different  methods.  The  Bessel  function  product 
series (eqs. 3.05 to 3.13 in ref. 12) was  used;  in  addition,  the  Bessel  function series 
(eqs. 3.03,  3.04,  3.15, and 3.16 in ref. 12) was  used  for  comparison.  The latter ser ies  
involves  Bessel  functions  with  argument 6 cosh 5 .  Each series was  checked at the 
origin (to = 0) against  the  joining  factors  which are tabulated  in  reference 12. Also, each 
series  was checked  against  the  tables of Barakat, Houston, and  Levin  (ref.  6)  and  against 
the  tables of Blanch  and  Clemm (ref. 17) for s = 4. This  value was the  upper  limit 
(on s) of the  available  tables  and  the  lower  limit on s for  this study. 

The  radial Mathieu  functions of the first kind were  the  most  difficult  to  evaluate. 
The  Bessel  function  product  series  for Jeo(4,O) checked  against  the  National  Bureau of 
Standards  tables (ref. 12) to  seven  significant  figures. However, this  accuracy  decreased 
to one significant  figure  for Je6(4,0),  and  functions of higher  order could not be  computed 
by this method.  The  accuracy of the  product series for  the Jer(s, [) and  Jor(s, [) 
functions  increased  with  increasing s; JeO(lOO,O) was  accurate  to  nine  figures,  and 
Je14(100,0)  retained a two-figure  accuracy. 

The  Bessel  function series proved  to  be a superior method for computing  Je,  and 
J O r .  By this method  Jeo(4,O) was  accurate  to  seven  significant  figures. Although this 
result  was not an  improvement  over that obtained by using  the  product  series, Jee(4,O) 
was found to  be  accurate  to six significant  figures, which represented  an  improvement of 
five  significant  figures,  and  Je8(4,0)  was  accurate  to  five  significant  figures. However, 
Je10(4,0)  was  accurate  to only one  significant  figure,  and  Je12(4,0)  and  Je14(4,0) 
could not be  computed.  The accuracy of the  Bessel  function  series  for Jer(s,O) also 
tended  to  improve  with  increasing s; Jeo(100,O) was  accurate  to six figures and 
Je14(lOO,O) was  accurate  to  eight figures. Note that  the  higher  order  functions are more 
accurate  than  the  lower  order  functions when s is large.  This  turns  out  to be a very 
important  property, since, in  the  scattering  problem,  the  long-wavelength (s = 4) solutions 
require only the  lower  order  terms  for  convergence.  The  short-wavelength  solutions 
(s = 100) require  more  terms, but it is no problem  to  compute  these  terms  for  the  large 
values of s. 

The  radial  Mathieu  functions of the  second kind were computed by the  Bessel  func- 
tion  product series. For 0 6 r 5 15,  Ne,(4,0) and NOr(4,O) were  accurate to eight 
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significant  figures.  The  accuracy of the  product series for  Ner(s,O) and  Nor(s,0) 
decreased with increasing s. For  example, Neo(100,O) was only accurate to three 
significant figures; Ne14(lOO,O) had  six-figure  accuracy, a loss  of only  two  places. 

The  accuracy of both  methods of computation  improved  with  distance  from  the  ori- 
gin  (increasing 5,). This  fact  was  established by comparing  the results of each series 
and  assuming  that, if they  were  the  same,  they were correct.  Larger  values of 5 
correspond  to  smaller  values of cylinder  eccentricity;  thus it is generally easier to eval- 
uate  the radial functions  on a nearly  circular  cylinder  than  on a nearly  flat  cylinder. 

In the  problem of scattering  from a porous  cylinder,  the  Bessel  function  product 
series  was  used  to  evaluate  the  functions of the  second  kind  and  their  derivatives.  The 
Bessel  function  series  was  used  to find the  functions of the first kind, and  the  derivatives 
of these  functions  were found from  the  Wronskian  relations  (eqs. (16)). 

The  magnitude  and  phase of the  complex  radial  Mathieu  functions  Her(s,<)  and 
Hor(s,<) could  be  computed to eight  significant  figures  for s = 4, and to six figures  for 
s = 100. This  fact is somewhat  surprising  in  view of the  preceding  discussion of the 
accuracy of the  radial Mathieu  functions of the first and  second  kinds  which  are,  respec- 
tively,  the real and  imaginary  parts of the  complex  function.  The  inaccurate  (real)  part 
of the  complex  number is much l e s s  in  magnitude  than  the  accurate  (imaginary)  part;  thus, 
the  complex  representation of the  number is fairly good throughout  the  range of s. 

The  evaluation of the  coefficients in the  scattering  equations  (eqs. (23) to (26)) 
depends  directly on the  evaluation of the Mathieu  functions.  The  coefficients Ur  and Vr 
in  equations (23) to  (26) are only as accurate as the  radial  functions of the first kind  (Jer 
and  Jor)  and  their  derivatives  (Jeg  and  Jog).  These  quantities  could  be  computed  to at 
least  five  significant  figures  for s = 4  and orders  up to eight. At s = 100 the  functions 
of the first kind  could be  determined  to at least six figures  for all orders, but the  func- 
tions of the  second kind (Ne, and Nor) could  be  obtained  to only three  figures  for  the 
lower  orders. Since the  Wronskian  relations  were  used  to  solve  for  the  derivatives,  the 
derivatives of Jer and J O r  are  limited  to  three-figure  accuracy.  The  accuracy  prob- 
lem  may  be  associated  with  the  waves  within  the  cylinder  since  this  field is given  in t e rms  
of radial  functions of the first kind. 

The  nonhomogeneous terms  in  equations (23) to (26) may  be  computed to six signifi- 
cant  figures  since  they  involve  only  the  complex  radial  functions  and  the  periodic  func- 
tions.  The  normalizing  factors Nr and NE a r e  computed from  the  coefficients Dek 
and D 4 )  and so are  accurate  to  eight  figures. 

(r 1 

Computation of the  coupling  coefficients  M  and N is discussed  in  the  appen- 
1, 1, 1' 

dix. The series  presented  therein  were  used  to  compute  these  coefficients.  The  inte- 
grals  12, were  computed  to  eight  significant  figures  to  obtain  eight-figure  accuracy  for 
the  coupling  terms. 
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The  four  infinite sets of equations  (eqs. (23) to (26)) were  solved  approximately by 
truncating  the  equations  to a finite set. This  method of solution,  which is also  called  the 
method of reduction, is discussed  in  reference 18. Computations  were  made by using 
matrices of orders  5, 6, and 7, which  gave 10,  12, and 14 terms,  respectively, in the 
ser ies  for q to,q). It was  observed  that  the  numerical  results  did not  change  signifi- 
cantly as the  order of the  matrices  increased  to 7; this  fact  implies  convergence of the 
solution by the  method of reduction. 

& 

Scattering  From a Porous  Cylinder 

Focal  lengths  h of 2, 4,  6,  8, and 10 were  used  to  determine  the  effect of frequency 
on  scattering  and  dissipation.  These  values  correspond  to  lengths of the  major axis of 
about  one-half  wavelength to  over  three wavelengths.  Solutions were computed for  real  
values of Z of 1, 2, and 4. The  angle of incidence Q! was  varied  in 30° increments 
f rom 0' to 90°, and  the radial coordinate to was  taken as 0.2,  0.4, and 0.8. Table I 
gives  the  ratios of scattered and  dissipated  power to incident  power (SR and DR) for 
these conditions. 

TABLE 1.- SCATTERED AND DISSIPATED POWER RATIOS 

50 

0.2 

0.4 

0.8 

SR 1 .  DR 

for Z = 1.0 

0.039 
.146 
.294 
.376 

0.115 
.176 
.275 
.316 

0.202 
.236 
.321 
.375 

0.545 
.599 
.713 
.721 

0.663 
.694 
.799 
.828 

0.750 
.730 
.635 
.553 

h = 2.0 

SR I DR 

for Z = 2.0 

0.094 
.304 
.601 
.744 

0.233 
.371 
.583 
.661 

0.415 
.479 
.612 
.681 

0.751 
.635 
.762 
,770 

0.820 
.792 
.860 
.869 

0.922 
.866 
.695 
.570 

S R T  

for Z = 4.0 

0.158 
.474 
.946 

1.179 

0.349 
.583 
.936 

1.609 

0.659 
.764 
.938 

1.008 

~ 

~ _ _  

0.77 1 
.542 
.629 
.654 

0.788 
.695 
.704 
.697 

0.851 
.771 
.586 
.470 
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TABLE I.- SCATTERED AND DISSIPATED POWER RATIOS - Continued 

[O 

0.2 

0.4 

0.8 

f 0  

~ 

0.2 

0.4 

0.8 

{ i! 
0 

~~ 

0 
30 
60 
90 

0 
30 
60 
90 

(b) h = 4.0 

for Z = 1.0 

0.050 
.161 
.312 
.365 

0.138 
.202 
.342 
.4 14 

0.255 
.289 
.324 
.392 

__ - 

. ~~ . 

.- " 

0.585 
.647 
.762 
.803 

0.693 
.703 
.655 
.597 

0.639 
.6 19 
,674 
.543 

. .  ~ ~ . .  

~~ - 

( c )  

0.06 5 
,165 
,320 
.390 

0.181 
.236 
.358 
,376 

0.272 
.291 
.340 
.377 

. . . - - - . 

"" 

" 

". - - 

0.581 
.670 
.758 
.747 

0.590 
.628 
,637 
.722 

0.607 
.632 
.637 
.599 
" 

for 

0.122 
.375 
.654 
,740 

0.298 
.437 
.666 
,765 

0.505 
.565 
.642 
.718 

. .. - 

1 = 6.0 

Z = 2.0 

0.860 
,797 
.827 
.824 

0.927 
.872 
.707 
.604 

0.803 
.728 
.744 
.569 

SR I DR 

for Z = 4.0 

0.2 18 
.6 17 

1.069 
1.154 

0.483 
.742 

1.038 
1.139 

0.808 
.892 

1.005 
1.069 

1.03 
.763 
.697 
.653 

0.956 
.828 
.606 
.498 

0.801 
.694 
.652 
.499 

- - .  ~ - 

SR I DR I SR 1 DR 
for Z = 2.0 I for Z = 4.0 

". .. " - - . ~~~ 

0.161 
.395 
.666 
.760 

0.377 
.496 
.695 
.740 

0.540 
,584 
.66 1 
,706 

~. 

.. 

0.846 
.852 
.815 
.773 

0.728 
.754 
.685 
.742 

0.738 
.734 
.713 
.661 

. 

0.288 
.732 

1.072 
1.16 5 

0.599 
.828 

1.076 
1.137 

0.86 5 
.932 

1.031 
1.074 

~- - 

- ~~ - 

0.984 
,835 
,674 
,621 

0.697 
.717 
.592 
.596 

0.743 
,700 
.649 
.605 
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TABLE I. - SCATTERED AND DISSIPATED POWER RATIOS - Concluded 

50 

0.2 

~~ 

0.4 

0.8 

50 

0.2 

0.4 

0.8 

3: 
60 
90 

0 
30 
60 
90 

0 
30 
60 
90 

i 
1 

I 
{ 

a, 
deg 

0 
30 
60 
90 

0 
30 
60 
90 

0 
30 
60 
90 

~ _ _  

(d) h = 8.0 

SR DR SR DR 

for Z = 1.0 for Z = 2.0 

0.0692 0.454 0.171 0.636 

.440  .609  .596 

0.122 0,509  0.267  0.704 

.424 .591 .585 

.658 

(e) h = 10.0 

SR I DR SR DR 

for Z = 1.0 for Z = 2.0 

0.08 5 0.554 0.200  0.807 
,186 .631 .432 .795 
.384 .595 .737 .615 
.429 .648 .800 .664 

0.193 0.582 0.4 14 0.735 
.256 ,587 .533 .694 
.374 .601 .721 .630 
.3.8 1 .717 .748 .739 

::: 
,601 1 JN; 1 .686 

0.289  0.56 3 0.578  0.650 

.345  .635 .680 .689 
.716 .766 

SR  DR 

for Z = 4.0 

0.308 0.710 
.773  ,829 

1.109 .611 
1.207 .469 

0.467 0.773 
.869 .704 

1.072 .638 
1.165 .466 

1.033 
1.042 .637 

SR I DR 

for Z = 4.0 

0.3  54 
,790 

1.13 1 
1.200 

0.688 
.885 

1.106 
1.150 

0.920 
.971 

1.064 
1.087 

0.978 
.795 
.520 
.548 

0.756 
.656 
.530 
.596 

0.634 
.648 
.608 
.647 
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The ratio of scattered power to incident  power (SR = 2) varied  from about 0.04 to 

over 1.0. It was a minimum  for  grazing  incidence (a! '= Oo) and a maximum for  normal 
incidence (a! = 90°) and  increased  monotonically  with real impedance  (resistance). As the 
resistance  becomes  infinite, SR must  approach  the  value  for  the  hard  cylinder. A com- 
putation  was  made  for  the  case of the  hard  cylinder  and  checked by using  tabulated  values 
of the  radial  functions  (ref. 17). The  numerical  result  for  scattered power was found to 
be  correct  for  h = 2.0 and a! = 0'. 

~~ I 

The  ratio of the  dissipated  power  to  the  incident  power ( DR = - :) must  have a m a -  

imum  value  between Z = 0 and Z = w. The  value of DR depends  on  the  product of 
the  pressure  drop  and  velocity at the  cylinder  surface. For zero  resistance  the  pressure 
drop is zero,  and  for  infinite  resistance  the  velocity is zero  whereas  the  pressure  differ- 
ential  must  remain  finite. It may  be seen  from  the  table  that  the  optimum  (maximum- 
dissipation)  resistance is usually  around 2, except  for  grazing  incidence  on a thin (to = 0.2) 
cylinder  where it is near 4. This  large  value of optimum  resistance is a surprising  result, 
since  in  one-dimensional  problems, a resistive  impedance of 1 gives  the  maximum  absorp- 
tion. For thin  cylinders DR was  an  increasing  function of the  angle of incidence  for 
Z = 1.0 and a decreasing  function of the  angle  for Z = 4.0. Another  interesting  result 
is that  the  maximum  value  for DR is just  slightly  larger  than 1 for  grazing  incidence on 
a thin  cylinder.  Thus, it may  be  concluded  that  the  maximum  percentage of energy which 
can  be  removed  from sound propagating  in a duct is equal  to  the  percentage of duct a rea  
blocked by the  splitter  rings and  spokes. 

In the  case of normal  incidence,  the  dissipation by an  elliptic  cylinder  with  eccen- 
tricity of nearly 1 should  be  roughly  comparable  to  the  dissipation by infinite  parallel 
planes of porous  material. If the  length of the  minor axis is held  constant  while  the  major 
axis is made  much  longer,  then two sides of the  cylinder  will  become  nearly  straight and 
parallel.  This  comparison is illustrated  in  figure 2. The  data  in  this  figure  are  for 
to = 0.2, which corresponds  to a cylinder  whose  major axis is roughly  five times  the length 
of the  minor axis. The  ratio of the  dissipated  power  to  the  power  in  the  normally  incident 
plane wave is plotted  against h, which may  be  interpreted as a frequency  parameter,  for 
the  condition of normal  incidence.  The  curves  in figure 2 give this  ratio  for  parallel 
planes  whose  spacing is equal  to  the  length of the  minor axis of the  cylinder. The maxi- 
mum  dissipation  and  minimum  dissipation  for  the  parallel  planes  occur at very  nearly  the 
same  frequencies as the  maximum  and  minimum  points  for  the  cylinder,  and  the  maxima 
have  nearly  the  same  values. 

Data  for  grazing  incidence  are  also shown in figure 2. Only about  one-fifth as much 
energy is dissipated  from  the  grazing  waves as from  the  normally incident wave. Dissi- 
pation ratios  for  the  grazing  incidence  waves are shown in figure 3. The  maximum and 
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Elliptic cylinder 
1.0 r Pref = Pp for   normal   incidence 

. 4  t 

= 1.0 O Parallel planes z = 2.0 

5 ,  = 0.2 

- """" I 
fsinh """" 

I ". 1 1 1 1 1 
0 2 4 6 8 10 

h 

Figure 2.- Comparison of dissipation  by  elliptic  cylinder  and  parallel  planes. 
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Figure 3 . -  Dissipation  ratio for grazing  incidence. 
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minimum  values of DR occur at frequencies which correspond  to  the  frequencies at 
which the  maxima  and  minima  occur  for  the  normal-incidence  condition, a result  which 
indicates  that  the  minor-axis  length is the  critical  dimension  for  grazing-wave  energy 
dissipation.  The  maximum  dissipation  occurs when the  minor axis is about  one-fourth 
wavelength. 

CONCLUDING  REMARKS 

The  exact  solution  for  scattering  from a porous  elliptic  cylindrical  shell  with  linear 
acoustic  impedance  has  been found in   terms of Mathieu  function series. Coefficients of 
these  series  are  solutions of four  infinite  matrix  equations.  Elements of the  matrices 
depend on integrals of the  periodic Mathieu  functions  and on the  radial Mathieu  functions. 
Series  expressions  for  the  integrals have  been found. The  Mathieu  functions  may  be  eval- 
uated  in  terms of known trigonometric and Bessel  function series. By use of highly accu- 
rate  modern  computers, it has  been  possible  to  evaluate  these  functions  for a range of 
parameters  for which no tables are available,  Thus, it has  been  possible  to  present  results 
for a range of frequencies  for which  only formal  solutions  exist  in  previous  literature. 

For a special  case  in which the  acoustic  impedance is a certain  function of position 
on  the  cylinder,  the  infinite  matrices  reduce  to  diagonal  forms, so that  simple  closed-form 
expressions  in  the  series  solutions  are  available. 

It is possible  to  obtain  numerical results inside  and  outside of the  cylinder  in both 
the  near  field  and  the f a r  field.  Near Afield solutions  have  been  used  to  obtain  the  power 
dissipated  in  the  porous  shell. 

The  periodic  Mathieu  functions  used  in  this  paper  could  easily  be  evaluated to eight 
significant  figures.  The  radial  Mathieu  functions  were  more  difficult  to  evaluate.  The 
Bessel function series  was  superior  for  evaluating  the  radial Mathieu  function of the first 
kind. This series had the  property  that  higher  order  functions  were  more  accurate  for 
larger  values of the  parameter s (the square of the  dimensionless  focal  length).  Since 
s is proportional  to  frequency-squared,  this  property  makes it possible  to find  solutions 
at the  higher  frequencies when the  higher  order  functions are needed. 

The  Bessel  function  product  series  was  superior  for  computing  the  radial  Mathieu 
function of the  second kind.  The accuracy of this  series  decreased  with  increasing s, or 
frequency.  The  complex  radial  Mathieu  function  was  computed  to six significant  figures 
in  the  range 4 5 s S 100. 

The integrals which  give the coupling terms  in  the  scattering  equation  were  evaluated 
by double  infinite series  to eight  significant  figures. 

A study of scattering  and  dissipation of energy by the  porous  cylindrical  shell  has 
been  made.  Scattering is negligible  for  grazing  incidence  on  the  cylinder  and is always 
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a maximum  for  normal  incidence.  The  scattering  increases monotonically  with resistance 
of the  porous  material. 

The  energy  dissipated  varies with  frequency  and  resistance.  The  maximum  dissi- 
pation  usually  occurs  near a resistance of about 2; however,  for  grazing  incidence  the 
maximum  dissipation  occurs  near a resistance of 4. 

The  ratio of dissipated  energy  to  incident  energy  reaches a maximum of about 1 for 
the  grazing-incidence condition. This  maximum  dissipation  occurs when the  minor  axis 
of the  cylinder is about  one-fourth wavelength. This result suggests  that  the  maximum 
percentage of energy  which  can  be  removed by placing a splitter  in a duct is numerically 
equal  to  the  percentage of duct area blocked by the  splitter. 

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Hampton, Va., June 21, 1971. 
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APPENDIX 

and 

EVALUATION OF COUPLING COEFFICIENTS 

In  order  to  evaluate  the  integrals,  each  term  in  the  integrand  will  be expanded as a Fourier 
series in  the  variable q as follows: 

co 

k=O 
W ~. 

Se2r+l(q) = 1 DeFG’)  cos(2k + 1)q 
k=O 

s02r+1(q) = 1 Do2k+l (2r+1) sin(2k + l)q 
k=O 

s02r+2(q) = 1 Do2k+2 (2r+2)  sin(2k + 2)q 
k=O 

(43) 

When these series are substituted  into  equations (38) and (39) for term-by-term  integra- 
tion, it  will  be  necessary  to  evaluate  the  integral 

2lr cos  mq  dq 

1/2(cosh 25, - cos 277) 
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APPENDIX - Continued 

The  radical in the  integrand of equation (44) may  be  represented as a series of 
Gegenbauer  polynomials.  Rainville (ref. 19) gives  the  generating  function  definition of 
these  polynomials as 

00 

(1 - 2xt + t2) -v = 1 c;(x)tn 
n=O 

The  denominator of the  integrand  in  equation (44) may  be  written as 

- 1/2 
[I2(cosh 25, - cos 271 = L2'O(1 - 2 cos 2qe -260 + e 

Therefore 

The  Gegenbauer  polynomial  in  equation (47) may  be  given as (ref. 19, p. 283) 

( i )k( i )n-k 
cos 2(n - 2k)q 

cy2 (cos 2q) = 
k!(n - k)! 

k=O 

(4 5) 

Equations (47) and (48) combined  give  the  desired  expansion  for  the  radical: 

- 1/2 00 

b(cosh 25, - cos 2q)l = e-" 1 e -2ntO 2 (i)k(i)n-k  cos 2(n - 2k)q 
(49) 

n=O  k=O 
k!(n - k)! 

From equation (49) it may  be  seen  that  the  integral  in  equation (44) is zero  for all 
odd values of m; consequently,  the  only  integrals which it is necessary  to  evaluate are 
of the  form 

2n cos 2mq  dq 
12m = S, 

/2 (cosh 25, - cos 27) 
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APPENDIX - Continued 

Substituting  equation (49) into  equation (50) gives 

L k!(n - k; 
n=m k=O 

That is, 

12m = e  -(2m+1)t0 f mfp (')k(')(m+2p-k) k!(m + 2p - k)! e -4p50 s,"" cos  2(m+ 2p - 2k)q cos 2mq dr] 
p=O  k=O 

:mc2p-k) -~ e-4p50 s,"" cos  2(m+ 2p - 2k)q cos 2mq dr] 
2p - k)! 

In equation (52) nonzero terms  occur only when k = p or k = p + m;  therefore, 

Since  the  factorial  terms  in  equation (53) form a decreasing  sequence,  the  error 
due to  truncating  the  series is 

where N is the  number of required  terms. 

If an  error  less  than e-F is desired when 45, << 1, an  estimate of the  number of 
required  terms is 

N >  
F - In 45, 

45, 
(55) 

where F is the  number of significant  figures. With N determined by equation (55), 
equation (53) becomes 
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APPENDIX - Continued 

Once the  integrals I2m a r e  evaluated,  they  may  be  used  to  evaluate  the  integrals 
in  equations (38) and (39). First, consider  the  product of the Mathieu  functions  in  the 
integrand of equation (38). If Sel and Se, both have  period n, their  product  may  be 
written as 

c o c o  

Se21Se2r = 1 1 De(21)  2k Dei:') cos 2kq cos 2jq 
k=O j=O 

Since cos 2kq cos 2jq = cos 2(k - j)q + cos 2(k + j)q, the  argument of each  term  in  the 

ser ies  is an even  multiple of q. Consequently, 
z z 

The  product of Mathieu  functions  with  different  periods  gives a ser ies  whose te rms  are 
all odd multiples of q. It was noted previously  that  the  integral of these  terms is zero; 
therefore, 

and 

The  product of even  Mathieu  functions  with  period 27r is 

Therefore 
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APPENDIX - Concluded 

A similar  evaluation for integrals involving odd Mathieu functions gives 

c o c o  
(2l4-1) ( 2 r + l )   p l k - j l  - 

N22+1, 2 r c l  = 1 1 Do2k+l  Do2j+l 2 
k=O j=O 

eo- 
(22+2) (2r+2)  [lalk-jl - '2(k+j+2) 

N22+2, 2r+2 = E 1 Do2k+2 Do2 j+2 2 1 
k=O j=O 
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